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ON THE STABILITY OF POINCARE PERIODIC SOLUTIONS OF HARMILTONIAN SYSTEMS

A.A. SAITBATTALOV

Using methods of the theory of stability of equilibrium positions of
Hamiltonian systems /1-3/, sufficient conditions are obtained for the
orbital stability of the Poincare periodic solutions of autoncmous
Hamiltonian systems with two degrees of freedom on the assumption that
the unperturbed system is non-degenerate.

1. cConsider an autonomous system with two degrees of freedom whose Hamilton function
has the form

F=F,(I)+ pF,(,9)....0=T, I =Q (1.1)

where @ == (@,;, @,) are generalized coordinates, I = (I;, [,) are their respective generalized
momenta (Q is a bounded connected region of the plane R?{[,, I,}), and p is a small parameter.
It is assumed that F is a 2% periodic function of the generalized coordinates, and analytic
with respect to all its arguments in the direct product Q X T2 X [0, e).

The equations of motion with the Hamilton function (l1.l) when =0 (the unperturbed
system) is integrable
I=r ¢o=0w{t+9¢ (1.2)
® = (0, ©y), o =23F,/0l k=1, 2)

Let the frequencies o, and @, of the unperturbed system be commensurable when [ ==1°:
g/, = l/m (m = N, ! & Z). Then the generating solution (1.2) is periodic with some period T.
We select the initial instant of time so that ¢, =0 for any p and when ¢=0. Suppose that
the following Poincare’ conditions

6'1"’9
detﬂwﬁ-uﬂ-;,z#o for I=1I° (1.3)
T g0 =h, 3 <FDI0N=0, & (FHIoA =0 (1.4)
(P> =+ S Fy(I°, ant, oat + M) de) (1.5)

[

for the existence of periodic solutions of the perturbed system with the Hamilton function
are satisfied. Then for reasonably small p s 0 there exists a periodic solution of period
v for the periodic system that analytically depends on parameter p, when p==0, becomes
the periodic solution (1.2) of the unperturbed system.

We write that solution in the form

Pr=wr+ kZI P'K'Pg.k) (wn) (1.6)

Pr= s+ A+ Zu"ﬁ"’ (1)

k=1

Ij=1I7+ ,‘Z piIP ), j=1,2
=1

where all functions on the right sides are periodic of period 2mm relative to the variable
w, = @,¢. Everywhere below the derivatives with respect to the variables I are calculated for
I=1U.

Theorem 1. Let the Hamilton function of the autonomous system with two degrees of
freedom have the form (1.1), and suppose the initial conditions of the generat,inq periodic
solution (1.2) are selected so that conditions (1.3) and (1.4) of the Poincar€ theorem are
satisfied. If these initial values satisfy the conditions
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a’;Fn (‘9;2 333 201‘:):-5;-3-,—--}- .‘?7‘;:.)>0 .7
PR [N =0 (1.8)

the orbital stability of the periodic solution {1.6) of the perturbed system exsits.

Proof. We change to the new canonical variables wy, Gy, Fy, Py (W, = @), such that when
gy == p, == r, = 0 we obtain the periodic solution (1.6). The variables g, p,, r, are perturba-
tions of the periodic solution (1.6). Perturbations ¢, p, are of the first order of small-
ness, and ry, as the action variable, is a quantity of the second order of smallness.

The perturbations are defined by the formulas

Pr=wy + );21 wf® () 1.9y

=gt wt ok Y e ) F o

Koma)

=1+ Y p'IP )+ 1y~ % Pt Y pCP (w1, 05,71, )

Tt 3 T 3
L=1Io+ 3 W )+ p

where the functions Gf‘) are selected so that transformation (1.9) is canonical and Gg') (iy, O,
0,00=0 for any k==1,2, etc. For the generating function

S=3 WS (P @z 1, Pa) (1.10)
K=0
we have the equations
38 a8 as a8
T =V e = oo =y, ?’:213 (1.41}

From {1.9)~{1.11) we have
So= (11°+r1—“:,l:-Pa)+%(Ix°+Pa)— Aps

Sim=— (1 — 22 ps) ol (@) — Paof® (91) + al® (@) +

S‘{A" O —(2t+1) L0
GS)=—-(r1-- % p’) d@_i:l(wx) — s d?gi f”l) s dl;:l(!w,)

To determine the stability conditions of the perturbed solution {1.6) we use Barrar's
theorem /5/. The Hamilton function of perturbed motion expanded in powers of ry, Py, g, i in
the neighbourhood of initial values that generate solution (1.6) has the form

1 1 1
F*=ﬂ)17'1 +—p;Dan+Tp,308Fo+—pg‘D‘Fo+ (1.12)
i 8.
7“2 012 + ripsD - h -1—"11’2’0’ aFo +
{—DlaF 1+ -g-DfF 1 + riDy .6F1 +'§['D1‘F 1+
6F 88,
"1Dx2 LA R 5 61? h m (w1) Dz — aF° +

1‘”(wx>n "F" +Gu)(PsD+T1 7 +D=) ”"}+

2 0
=G e I D1~¢]2 -+ P

1
Dy=—p*D* + '%"'Pz’l)’ -+ Txpzaj,-fl— +
1 a3 i
TR —
Fos==Fo(I%, anpx(lc' wzy':—lwx + l}

where the dots denote terms of the order of smallness relative to perturbations higher than
the fourth and, also, terms of the order of smallness relative to p higher than the second.
The Hamiltonian of perturbed motion is a 2am periodic function of the variable w,.
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We will represent it in the form
F* =@, 4+ pd, (1.13)
2m

1
®1=m* S F* (w1, qa, 11y pa) @y, (Dpd>=0
o
Consider the Hamiltonian of K which is the quadratic part of @, in variables ¢, p,
K = pbgy® + pegep; + (2 + Ha)p,®

b:—_—.i 3 (Fy) = %< F1) o @ (Fy>
T S aer, o ol

(.14

N S #F, 2 O,
@0 = 5 D*Fo = o (0 Sy — 2onn 71+ on® )
3F,

1 1 !
a =5 DXCFY + AP DGR APy D
<y Py 2 8 ¢Fy :
[l -1 12| -

Below, we assume that @, 0, which means that the level lines of the function &, ()
have no inflections in the region Q. The characteristic equation corresponding to (1.14) has

the £
& Form @ + bub (2o + pa) — pict = 0

Let us assume that 4a >0. Then the characteristic equation has two purely imaginary

complex-conjugate roots
@y, s = £ 1Y uQ; = &= § [4pb (g, + pa) — P

Otherwise the periocdic solution (l1.6) is unstable.
As the result of a canonical transformation

wy==wy', gy==p'ifh 12y sinwy’ — s V2r:" coswy’
ru=pry, py==pp7 V2 cos wy’
(Br=sign bV Qu/2[B], Ba=rc(2|b|Q)™)

of valency 1/;1, we obtain a new Hamiltonian of the perturbed motion, which we represent in
the form
ot = e+ VB {K (ry 1) + Ky (0, 0y, 7, 1)} {1.15)

K]_ (rlg r2) ——3“2?:1'""‘ S (Dl (w;, r1, Ta)du)g

m
1]
1 2m 2xm
“Crmp S S Ko (w1, we, 11, ry) Ay dwg == 0
[ ]

(primes on the new variables are omitted). Transformation (1.15) enables us to consider the

change of variable r, in the ring Vy== {p, < 5 < P3, P1r Ps > O}, The Hamiltonian F** is then
an analytic function of all its arguments in the direct product ¥ X T® X {0, &), where V==

Vi, x V, V,CR {r,} and V), ¥, are closed sets.

We have _ _
Vu Ky (ry, re) == Y sign burs + ndyri? + pdore® +
p'alsAlgl‘lrg - 0 (llz, rkrf) (/c, j==1, 2)
1 8*F, 1 3 CFp
A=, A= b5
1 aF, s B <Fp
A12=—2“(D, "5"": + By —__61163\‘,2 )

Consider the determinant
Bl +VEK) @nt+Vik)
or

arké‘rj X N 24+
det — e = —
a(mm-i-Vll Ky) 0 # s
or.

j
L (F .
O r)=— ‘“012—1%- Pt {;;16l> + 0@y, kj=1,2

F** of perturbed motion satisfies all conditions of Barrar's
The conditions of orbital

If N =z 0, the Hamiltonian
theorem, and hence the periodic solution (1.6} is orbitally stable.

stability of solution (1.6) thus have the form {1.7).
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2. Let us use the above theorem to investiage the orbital stability of Poincar€ pericdic
solutions in the problem of the motion of a heavy solid about a fixed point, which ;aeere
obtained in /6, 7/. Following /8/, we shall show that in this problem the Poincare pericdic
solutions that are stable in the linear approximation /7/, are orbitally stable.

The Hamilton function in the problem of a heavy solid rotating about a fixed point, in
Andoyer canonical variables L, G, H, 1, g, h, has the form

F=F0‘+‘}LF1: F°= (G ;L’)(sl{l’;’l + 001\‘;1)_*_ . F1=%Y1+_:_/_?2+—;-?3 (2.1)

Vy==TDysinl -+ Tysinlcosg 4 (G/L) T, cos Isin g, ?z-—-r OOSZ—E-Fgcoslcosg—(GJL) T,sinlsing
va-—I‘ll‘,cosg, le—V . rz.._...__l/-i__

where F, 1isthe Hamiltonian in the Euler-Po:.nsot case. The regions of posm.ble valuesof L and G
istheset A={(L, 6): G>0, |L |G}, A, B, C arethe principal moments of inertia of the body
with (A4 2> B > C); p is the small parameter equal to the body weight multiplied by the distance
between the centre of mass and the suspension point, ({z, y, z) are the coordinates of the centre of
mass in the principal axes of the body ellipsoid of inertia, and r= ¥z + y¥ + 2z is the distance
between the centre of mass and the suspension point.

Since the Hamiltonian F is independent of the variable h, the momentum ¥ corresponding to that
variable is the integral of motion (the area integral). By fixing the constant of the area integral
H = H,  wereduce the problem considered here to a systemwith two degrees of freedom.

In the case of dynamic symmetry A = B one can assume that y = 0, then the Hamiltonian func-
tion (2.1) takes the form

4 1 1 i z z :
F—_.--ZZ-G2+-2-('—‘-7)L2+p{-—r—?1+773} (2.2}
When p=0', we have the following generating motion:
G=6y L=Ly, g=at, l=ast+l, o=, o=(4—)L

From the results of /7/ and Theorem 1 on the stability of periodic solutions we have the
following theorems (cf. /8/).

Theorem 2. Llet z%= 0 and A= B> 2G. Then, on two-dimensional invariant tori

T=t(g— )b 6#0, G#|H]

of the Euler-~Poinsot problem pairs of isolated periodic solutions of the perturbed system are
generated for small ps= 0. These solutions analytically depend on Kk, and one of each
pair of solutions is orbitally stable, and the other unstable,

Theorem 3. Let x50, A=BstC and Hy% 0, G | H,|. Then on rescnance tori G =G, >
0, L=0 (the rotations are around the principal axes of inertia in the equatorial plane of
the ellipsoid of inertia) of the Euler-Poinsot problem pairs of isolated periodic solutions
of the perturbed system are generated for small values of parameter p 5= 0, They analytically
depend on u, and one solution of each pair is orbitally stable, and the other unstable,

In the case of an unsymmetric solid 4> B> ( we introduce in the Euler-Poinsot problem
the "action" variables

13*"'1‘39:1{0’ 12 Gy II(IMFO)= {2.3)

2:: Sa [21%—12 (suj:l + cos”):'l [%-Sin”—go-g—l']dhdl

A

The variables ¢, ¢, conjugate to I, J, are expressed in terms of [, g by elliptic quad-
ratures. In I,, I, coordinates again the region A== {(I,, I): I3 0, |I, | < I,). Expansion of
the perturbing function Fy{ly, Iy, Ii%, @1 @) in a double Fourier series in the variables @, @
has the form

Fi= _% Fon,10xp [i (mops 4+ @2)] + § Fon, < exp [i (me1— gu)] + _}i Fo, oexp [imp] (2.9

We will introduce intc the analysis the sets

Bo=AN({Ii=0 2F,=1B} U{|1,1=1))
A= AN {, I): | I8 1< I}

Bl= A, N {{y, L) | I° | < I}

V={I=, L): I C A me, () &= o, () =0,

0y =0Fy/ol; (=1, 2); m& Z \ {0}; Fug (I) 5= 0}
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where V is the secular set of the perturbed svstem. It was shown in /8/ that the function
Fy(I) is continuous in the region A, and is homogeneous of power 2; it is analytic in the
region 44, non-degenerate (the Hessian of Fy(I) in variables I,, I, is non-zerc), and
iscenergetically non-degenerate (the level lines of Fy{I}) have no inflections in A,), and
the function F = F, 4 pF, is determinate and analytic in A%. It was shown in /8/ that ex-
pansion (2,4) has an infinite number of coefficients of the form Fpm41 that are non-zero
for I V.

Theorem 4, Let I=IP &V, VC A®° be the secular set of the perturbed system. Then
from the set of periodic solutions of the Euler-Poinsot problem that lie on the torus I'=
PP= A°, at least tow isolated periodic solutions are generated when there is a perturbation.

These solution exist for fairly small R0 and depend analytically on p. One of the solu-
tions is then orbitally stable, and the other unstable.

A proof of existence of the Poincare periodic solutions was given in /8/. We have to
show that solutions that are stable in the linear approximation, are orbitally stable. As
an example, let us consider Theorem 4, We set

Py == Oif, @y == Wyl + A, ;== dF/81; (j=1,2) {2.5)
I=P=({, LA’ eV, oJo,=m
From (2.4) it follows that
(Fy) == Fom,16? + Fpye - Fy (2.6)
and for some A we have & <F,Mdh =0 /8/ and

ks .
T2 = Fome — Fon 0
It is evident from (2.6) that @ (F)H/oMt = ~[83(F»/0M* 5= 0, consequently, the poincare
periodic solutions that are stable in linear approximation, are orbitally stable.
Theorems 2 and 3 can be proved similarly.

The author thanks A.P. Markeyev for his interest.
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