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ON THE STABILITY OF POINCAREd PERIODIC SOLUTIONS OF HARMILTONIAN SYSTEKS* 

A.A. SAITBATTALOV 

Using methods of the theory of stability of equilibrium positions of 
Hamiltonian systems /l-3/, sufficient conditions are obtained for the 
orbital stability of the Poincard periodic solutions of autonomous 
Hamiltonian systems with two degrees of freedom on the assumption that 
the unperturbed system is non-degenerate. 

1. Consider an autonomous system with two degrees of freedom whose Hamilton function 
has the form 

F = F, (I) + @, (Z, cp)’ . . .t cp E T*, I E Q (1.1) 

where 'p=(cp,, ma) are generalized coordinates, Z=(Z,, Zz) are their respective generalized 
momenta (Q is a bounded connected region of the plane R* {II, I,}), and p is a small parameter. 
It is assumed that F is a 2r( periodic function of the generalized coordinates, and analytic 
with respect to all its arguments in the direct product Q X T2 X [O, e). 

The eguations of motion with the Hamilton function (1.1) when p-0 (the unperturbed 
system) is integrable 

z = I", cp = 0 (Z)t + cpO (1.2) 
6l= (q, aa), ok = aF,/c9Zk (k = 1, 2) 

Let the frequencies o1 and o,of the unperturbed system be commensurable when Z=Z" : 
o,lol, = Z/m (m=N, 2 E 2). Then the generating solution (1.2) is periodic with some period r. 
We select the initial instant of time so that 'pr=O for any p and when t=O. Suppose that 
the following Poincare'conditions 

det[l~~~,hl,2#0 for I--I” (1.3) 

3 (pto = l., a <F&S. = 0, a* <F,)lt'h* # 0 (1.4) 

( (PI) - f 5 Fz (I”, W, et + a) dt) 
0 

(1.5) 

for the existence of periodic solutions of the perturbed system with the Hamilton function 
are satisfied. Then for reasonably small p#O there exists a periodic solution of period 
z for the periodic system that analytically depends on parameter p, when ~"0, becomes 
the periodic solution (1.2) of the unperturbed system. 

We write that solution in the form 

Ij=Ij” + kxlpkI$k) (wl), j= I,2 

where all functions on the right sides are periodic of period km relative to the variable 
WI = qt. Everywhere below the derivatives with respect to the variables Z are calculated for 

z = I". 
Theorem 1. Let the Hamilton function of the autonomous system with two degrees Of 

freedom have the form (l.l), and suppose the initial conditions of the generating periodic 
solution (1.2) are selected so that conditions (1.3) and (1.4) of the Poincare'theorem are 
satisfied. If these initial values satisfy the conditions 
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(f-7) 
f1.8) 

the orbital stability of the periodic solution (1.61 of the perturbed system exsits, 

Proof. We change to the new canonical variables W,, Q,, rlr pI (W, % o,i), such that when 

92 = PI = rz - -0 we obtain the periodic solution (1.6). The variables qz,pzl r, are perturba- 

tions of the periodic solution (1.6). Perturbations ql, pI are of the first order of small- 

ness, and rl, as the action variable, is a quantity of the second order of smallness. 

The perturbations are defined by the formulas 

where the functions t$k' are selected so that transformation (1.9) is canonical and @:'(q, 0, 
O,O)=O for any k=i,2, etc. For the generating function 

we have the equations 

From (1.9)--11.111 we have 

To determine the stability conditions of the perturbed solution (1.6) we use Barrar's 
theorem /5/. The Hamilton function of perturbed motion expanded in powers of rI, pr,qe,p in 
the neighbourhood of initial values that generate solution (1.6) has the form 

F*=o,r,+- ; P$% + + fiapFo + + PWFCI + (1.12) 

1 
~r~2~+r~~D~+fr~*PDI~f 

or {+w, + -&D,~F~ f hDl $$ + +VF, + 

+r1R~g ~f-&r~2-$+Z~*(wl)D~~+ 

Z:!’ (~1) 4 $ + Gjf’ (p& + Q$-+DI)+]+ . . . 

D=+-++, D~=q++-p,D 2 1 

Dt= +- pt2D2 + -& p2Da + rlp& $- + 

+r12 +- 1 -7J- rlp,*Da -5 

F ,I = PO (Z’), Fi =t F l( al&b + h) I”, wl, 

where the dots denote terms of the order of smallness relative to perturbations higher than 
the fourth and, also, terms of the order of smallness relative to p higher than the second. 

The Hamiltonian of perturbed motion is a km periodic function of the variable ur,. 
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We will represent it in the 

(1.13) 

Consider the Hamiltonian of R which is the quadratic part of @, in variables ,J,_P~ 

K = &2 + PcghPa + fao + v)P,~ (1.14) 

b=.+ ‘$’ , C=$& 01 a8 CFI) -- 
co, -Ymq- 

a0 = ~~Fo~~(ola~-20~~~+~2~) 

a=- ; D”<Pl) -I- + (Ip’) D” ‘z$ + + <I;“> D” s 

:~~:1--1.~~~~1 @,5=1,2) 

Below, we assume that a,#& 'which means that the level lines of the function P,(I) 
have no inflections in the region 0. The characteristic equation corresponding to (1.14) has 
the form 

d -+ 4pb ia, + pa) - f.Lv = 0 

Let us assume that 4u&>O. Then the characteristic equation has two purely imaginary 
complex-conjugate roots 

Otherwise the periodic solution (1.6) is unstable, 
As the result of a canonical transformation 

W~=wr', Q=@& JCG7sinwa'- c'A& mcosws' 

r.l=Ivi, PI”= p”B” l/R co9 wrp 

@I = sign b I/&a, Bs = c (2 1 b 1 S&p@) 

of valency I/p, we obtain a new Hamiltonian of the perturbed motion, which we represent in 
the form 

(primes on the new variables are omitted). Transformation (1.15) enables us to consider the 

change of variable r, in the ring vs pi f p1 Q r,<PS,pr.lpS>~}, The Hamiltonian F** is then 
an analytic function of all its arguments in the direct product V X Ts X [o, E), where V= 

V, x Y,, Y,c Ri {r,} and V,, V, are closed sets. 
We have 

Consider the determinant 

If NqkO, the Bamiltonian F** of perturbed motion satisfies all conditions of Barrar's 

theorem, and hence the periodic solution (1.63 is orbitally stable. The conditions of orbital 

stability of solution (1.6) thus have the form (1.7). 
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2. Let US USA the above theorem to investiage the orhital stability Of Poincare periodic 
solutions in the problem of the motion of a heavy solid about a fixed point, which were 

obtained in /6, 7/. Following /8/, we shall show that in this problem the Poincare'periodic 
solutions that are stable in the linear approximation /7/, are orbitally stable. 

The Pamilton function in the problem of a heavy solid rotating about a fixed point, in 
Andoyer canonical variables L,G,H, 1, g, h r has the form 

F=F~+ pF,a &=~(+++)+$, Fl=.++.+y++~ (2.1) 

Yr = r1 sin I -k r, sin I cos g + (GIL) rz cos 1 sing, '&a-;: rr 00s 2 + re cos t cos g - (G/L)I’, sin I sing 

Y¶ = r,r, ~0~ g; rl = +A --(G)“, I&.)/i-(+) 

where F, istheHamiltonianinthe Euler-Boinsotcase.The regions ofpssiblevaluesof L and G 
is the set A = {(L, G): G ) 0, 1 L I< G), A, B, C aretheprincipalmomentsofinertiaof thebody 

with (A > B > C); p is the smallparameterequaltothebodyweightmultipliedbythe distance 
between the centreofmassandthesuspensionpoint, (z, y, 2) arethecoordinatesof thecentreof 
massintheprincipalaxesofthebodyellipsoidofinertia, and r= f.3 + y2 _t zz isthedistance 

betweenthe centre ofmass andthe suspension point. 
Since the HamiltonianFis independentof thevariableh, the momentum Hcorrespondingtothat 

variable is theintegralofmotion ftheareaintegral). By fixing theconstantoftheareaintegral 
N=X,, we reduce theproblem consideredheretoasystemwithtwo degrees of freedom. 

In the caseofdynamicsymmetry A =B onecanassume that y= 0, than the Hamiltonian func- 
tion (2.1) takes the form 

F= -&Gz++(+ -+)Lz+~[~yl+~y~ 
3 

(2.2) 

When p=O, we have the following generating motion: 

G=GO, L=L,,, g=olt, Z=~t+&,, al= 2% 9=(+$)LlJ 

From the results of /7/ and Theorem 1 on the stability of periodic solutions we have the 
following theorems (cf. /8/j. 

Theorem 2. Let x=$0 and A=B>2G. Then, on two-dimensional invariant tori 

++_+f) L, G#O, G#l&l 

of theEuler-Poinsotproblem pairs of isolated periodic solutions of the perturbed system are 
generated for small p+O. These solutions analytically depend on p, and one of each 
pair of solutions is orbitally stable, and the other unstable. 

Theorem 3. 

0, L. 
Lets+=& A=B#C and ff,,+O,G+[H,/. Then onresonancetori G-G,> 

=@ (the rotations are around the principal axes of inertia in the equatorial plane of 
the ellipsoid of inertia) of the Euler-Poinsot problem pairs of isolated periodic solutions 
of the perturbed system are generated for small values of parameter g#O. They analytically 
depend on p, and one solution of each pair is orbit 

In the case of an unsymmetric solid A > B> C 
the "action" variables 

lly stable, and.the other-unstable. - 
we introduce in the Euler-Poinsot problem 

(2.31 

The variables ml,qF? conjugate to 
ratures. In I,, I, 

I,,I, are expressed in terms of 1, g by elliptic quad- 
coordinates again the region A - ((I,, I,): -1, > 0, J I, 1 < 1%). Expansion of 

the perturbing function #'r(I,, I,, ISo, mr, &in a double Fourier series in the variables ql, s 
has the form 

(2.41 

We will introduce into the analysis the sets 
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where V is the secularsetofthe perturbed system. It was shown in /0/ that the function 
F,(Z) is continuous in the region b, and is homogeneous of power 2; it is analytic in the 
region A,, non-degenerate (the Hessian of F,(I) in variables Z,,Za is non-zero), and 
isoenergetically non-degenerate (the level lines of F,(Z) have no inflections in A.,), and 
the function F=P, + i;pr is determinate and analytic in A",. It was shown in /0/ that ex- 
pansion (2.4) has an infinite number of coefficients of the form Fm,*i that are non-zero 
for ZE V. 

Theorem 4. Let Z=PE V, Vc A0 be the secular set of the perturbed system, Then 
from the set of periodic solutions of the Euler-Poinsot problem that Lie on the torus I = 
PE Aas at least tow isolated periodic solutions are generated when there is a perturbation. 

These solution exist for fairly small p#o and depend analytically on p. One of the soiu- 
tions is then orbitally stable, and the other unstable. 

A proof of existence of the Poincardperiodic solutions was given in /8/. We have to 
show that solutions that are stable in the linear approximation, are orbitally stable. As 
an example, let us consider Theorem 4. We set 

= a$, CP, = aat + h, wj = ~F~/~Z, (j = l,Z) 

?= P = (Z,, Z,) E A,", I" E V, o,/o, = m 
(2.5) 

From (2.4) it follows that 

<F,) = F-,M f Fm,++ 5 Fe,, ,, 

and for some k we have d <F,>i%=O /8/ and 

(2.6! 

(7r C&> 
TP-= - F_,,le” - F,,_l& + 0 

It is evident from (2.61 that aP <F1)i&*= -~@(Fi>/&a#O, consequently, the Poincare' 
periodic solutions that are stable in linear approximation, 

Theorems 2 and 3 can be proved similarly. 

The author thanks A.P. Markeyev for his interest. 
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